
Configuration Management With CVS

References: (https://www.cvshome.org)
“CVS for New Users” by Bob Arnson
“Introduction to CVS” by Jim Blandy
“Version Management with CVS” by Per Caderqvist et al.



CS470 CVS notes 2

1.1 What is Configuration Management?

Traditional definition: Management of source code for 
software development, especially in the context of:

• Large code/artifact bases
• Multiple developers
• Multiple versions
• Desire to be able to back out of changes

Configuration refers to the way different versions of 
different files are put together for different system 
versions

Traditional definition also known as “revision control”



CS470 CVS notes 3

1.2 Revision Control: The Problem

Take a software project where:
• There are several files with several people working on 

those files 
• You want one final version of everything

Possible problems:
• Different people having different versions of files
• Inconsistent changes by different people
• Changes getting lost



CS470 CVS notes 4

Example 1: Conflicting Changes

1. Bob has the “master copy”
2. Alice and Chris get copies

3. Alice changes Person.java and Chris changes 
Address.java

— Everything still works for them

Address.java

Person.java

Alice

Address.java

Person.java

Bob

Address.java

Person.java

Chris

Address.java

�����
�����Person.java

Alice

Address.java

Person.java

Bob

�������
�������Address.java

Person.java

Chris



CS470 CVS notes 5

Example 1: Conflicting Changes …

4. Alice and Chris send their copies to Bob

— Bob can’t compile the program anymore
5. Now there is no working master copy

— Have to figure out manually how to reconcile 
changes

Address.java

������
������
������
Person.java

Alice

�������
�������Address.java

�������
�������
�������

Person.java

Bob

�������
�������Address.java

Person.java

Chris



CS470 CVS notes 6

Example 2: Changes Getting Lost

1. Alice and Chris both change Person.java

2. Chris sends his changes to Bob

Address.java

Person.java

Alice

Address.java

Person.java

Bob

Address.java
������
������
������

Person.java

Chris

������
������
������

Address.java

Person.java

Alice

Address.java
������
������
������

Person.java

Bob

Address.java
������
������
������

Person.java

Chris

������
������
������



CS470 CVS notes 7

Example 2: Changes Getting Lost …

3. Later, Alice sends her changes to Bob

4. Finally,  Chris gets Alice’s changes from Bob

5. Now no one has Chris’s original changes!

Address.java

Person.java

Alice

Address.java

������
������
������

Person.java

Bob

Address.java

������
������
������

Person.java

Chris

Address.java

Person.java

Alice

Address.java

������
������Person.java

Bob

Address.java

������
������Person.java

Chris

������
������
������

������
������



CS470 CVS notes 8

1.3 CVS Terminologies

Revision: a version of a given file
• File goes through a revision every time someone edits 

and saves it
• File has a revision history

Release: major publicized version of a system
• Release 1.0, 1.2, 2.0, etc.

Version: used informally for both of the above
Repository: storage space for revisions of files

• May also contain information about what revisions of 
what files go in what releases



CS470 CVS notes 9

1.4 The CVS Repository

Repository lives on someone’s filespace
• You never access any of the files in the repository 

directly
• Instead, use CVS commands to get your own copy of the 

files into a working directory
• When you finish making changes, you check (commit) 

them back to the repository
• Contains information such as:

—Changes made
—What exactly was changed
—When changes were made
—Other information, such as comments



CS470 CVS notes 10

The CVS Repository …

• Developers (including the repository owner) have 
working copies

• All developers must have write access on Unix
• Networked version of CVS must exist

Alice's filespace Bob's filespace Chris's filespace

Bob's
working
copy

Repository
Chris's
working
copy

Alice's
working
copy



CS470 CVS notes 11

Example 1: Conflicting Changes - with CVS

1. Alice and Chris both check out all files

2. Alice changes Person.java and Chris changes 
Address.java

Address.java

Person.java

Alice

Address.java

Person.java

Repository

Address.java

Person.java

Chris

Address.java
������
������
������

Person.java

Alice

Address.java

Person.java

�������
�������
�������

Address.java

Person.java

ChrisRepository



CS470 CVS notes 12

Example 1: Conflicting Changes - with CVS…

3. Alice makes sure her copy works, then commit her 
changes.

4. Chris in now blocked from committing his changes

Address.java

Person.java

Alice

Address.java
������
������
������
Person.java

Repository

�������
�������
�������
Address.java

Person.java

Chris

Address.java

Person.java

Alice

Address.java
������
������
������
Person.java

Repository

�������
�������
�������
Address.java

Person.java

Chris

������
������
������

������
������
������



CS470 CVS notes 13

Example 1: Conflicting Changes - with CVS…

5. He must update his files first

6. After he has made sure his copy works, he can commit his changes

— Chris does not have to know which files to update
— CVS knows not to clobber his new version

Address.java
������
������
������

Person.java

Alice

Address.java
������
������
������
Person.java

Repository

�������
�������
�������

Address.java
������
������
������

Person.java

Chris

Address.java
������
������
������
Person.java

Alice

������
������
������
Address.java
������
������
������
Person.java

Repository

������
������
������
Address.java
������
������
������
Person.java

Chris



CS470 CVS notes 14

Example 2: Changes Getting Lost - with CVS

1. Alice and Chris both changes Person.java

2. Alice makes sure her copy works, then commit her 
changes. 

Address.java

Person.java

Alice

Address.java

Person.java

Address.java
�������
�������
�������Person.java

ChrisRepository

Address.java

Person.java

Alice

Address.java
�������
�������
�������
Person.java

Repository

Address.java
�������
�������
�������
Person.java

Chris

�������
�������
�������

�������
�������
�������



CS470 CVS notes 15

Example 2: Changes Getting Lost - with CVS…

3. Chris in now blocked from committing his changes

4. He must update his files first. Chris gets a revision that 
has both changes present and clearly annotated

Address.java

Person.java

Alice

Address.java

�������
�������Person.java

Repository

Address.java

������
������Person.java

Chris

Address.java

Person.java

Alice

Address.java

�������
�������
�������

Person.java

Repository

Address.java

������
������
������
Person.java

Chris

�������
�������

�������
�������
�������



CS470 CVS notes 16

Example 2: Changes Getting Lost - with CVS…

5. Chris must resolve the conflict and remove annotation 
first before committing his changes

6. Alice’s next update will get the new changes

Address.java

Person.java

Alice

Address.java

�������
�������
�������

Person.java

Repository

Address.java

�������
�������
�������

Person.java

Chris

Address.java

Person.java

Alice

Address.java

�������
�������
�������

Person.java

Repository

Address.java

�������
�������
�������

Person.java

Chris

�������
�������
�������

�������
�������
�������



CS470 CVS notes 17

1.5 Using CVS: Steps for the repository 
owner

1. Decide where the repository is going to be
— e.g. /gaul/special/cs212/<group-name>/PROJECT

2. Set CVSROOT environment variable
— For csh/tcsh:

setenv CVSROOT /gaul/special/cs212/<group-

— For sh/bash:
CVSROOT=/gaul/special/cs212/<group-name>/PROJECT
export CVSROOT

3. Create repository
cvs init

4. Make repository accessible
chgrp –R <group-name> $CVSROOT

ROOT



CS470 CVS notes 18

Using CVS: Setting Up Initial Version for the 
Group (By one member)

1. Choose a name for the project
— e.g. cs212project

2. Go to the directory with the initial version of the code
3. Issue command:

cvs import –m “CS212b Project” cs212project <group-name> start

— The thing in the double-quotes is a readable description
— Every checkout from now will use cs212project as 

the root directory of the system
— <group-name> is the “vendor tag”
— start is a “release tag”



CS470 CVS notes 19

Using CVS: Setting up your working copy 
(by all project members)

1. Set CVSROOT environment variable, just as the owner 
did (see Step 2 of the repository owner)

2. Go to the directory (working directory) where you want 
directory in

3. Issue command:
cvs checkout cs212project 

4. You will get all the files
— Working copy
— You can make changes

5. You also get a CVS directory
— Administrative files



CS470 CVS notes 20

Using CVS: Other commands

• Say “cvs commit” to commit your changes
—This will first invoke an editor for adding comments
—To avoid invoking an editor, use:

- “cvs commit –m “message””

—It will figure out which files to commit
—It will block your commit if you need to update

• Say “cvs update” to get the latest update
—It will tell you which files were updated
—It will warn you if there are conflicting changes



CS470 CVS notes 21

Using CVS: Other commands …

• If you have a new file to add, say “cvs add <fname>”
—It has not added it to the repository yet
—“cvs commit” will commit the add

• Similarly, “cvs remove <fname>” will flag the file for 
removal

—“cvs commit” will commit the removal
• “cvs diff”: shows the differences between your file and 

what is in the repository, or between versions
• “cvs export”: like “cvs checkout”, but without 

admin directories (i.e. for giving a copy to the client)
• “cvs history”: brief history
• “cvs log <fname>”: exhaustive history of fname


	1.1 What is Configuration Management?
	1.2 Revision Control: The Problem
	Example 1: Conflicting Changes
	Example 1: Conflicting Changes …
	Example 2: Changes Getting Lost
	Example 2: Changes Getting Lost …
	1.3 CVS Terminologies
	1.4 The CVS Repository
	The CVS Repository …
	Example 1: Conflicting Changes - with CVS
	Example 1: Conflicting Changes - with CVS…
	Example 1: Conflicting Changes - with CVS…
	Example 2: Changes Getting Lost - with CVS
	Example 2: Changes Getting Lost - with CVS…
	Example 2: Changes Getting Lost - with CVS…
	1.5 Using CVS: Steps for the repository owner
	Using CVS: Setting Up Initial Version for the Group (By one member)
	Using CVS: Setting up your working copy (by all project members)
	Using CVS: Other commands
	Using CVS: Other commands …

